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ABSTRACT 

We present a video-based monitoring system for quantification of patient’s attention to visual 

feedback during robot assisted gait rehabilitation. Patient’s face and facial features are detected 

online and used to estimate the approximate gaze direction. This gaze information is then used to 

calculate various metrics of patient’s attention. Results demonstrate that such unobtrusive video-

based gaze tracking is feasible and that it can be used to support assessment of patient’s 

compliance with the rehabilitation therapy. 

1.  INTRODUCTION 

Stroke is the third most common cause of death in Western society, with ~4.7 million stroke survivors alive 

today. One of the hallmark residual impairments of stroke is post-stroke walking disability, which creates a 

stigma for patients, makes them more susceptible to injury and directly affects their quality of life. Early 

rehabilitation therapy is crucial for significant improvements (Kollen et al, 2006). In recent years, robotic 

systems are widely tested and employed to retrain stroke patients. By imposing gait-like movements at a 

comfortable speed, such robotic devices are thought to provide many of the afferent cues regarded as critical to 

retraining locomotion (Mehrholz et al, 2007). 

However, a major problem with existing stroke therapies is patient non-compliance (Matarić et al, 2007). 

Many stroke patients abandon the therapy because the process is too long, repetitive, and/or does not provide 

immediate results (Teasell and Kalra, 2005). European project BETTER (Project, 2013) recently addressed a 

new approach to gait rehabilitation by employing non-invasive brain-neural computer interaction (BNCI) based 

assistive technologies based on EEG, EMG and IMU sensors. In this paper we extend the BNCI-based 

modalities with video-based attention monitoring system that allows automatic quantification and long-term 

monitoring of user attention. Such attention tracking does not require any sensors to be attached to the patient, 

making this method easy and fast to apply in stroke rehabilitation. Our main objective is to quantify patient’s 

attention to visual feedback, i.e. the amount of time the patient’s gaze is actively following the displayed visual 

feedback and to inspect the possible impact of visual feedback on motor planning, as well as its short- and mid-

term benefits. 

Several studies already examined the impact of visual feedback on stroke rehabilitation, but they mostly 

reported inconclusive results. They focused on quantification of results of rehabilitation enhanced with different 

kinds of visual feedback, but their experimental designs did not allow for a reliable quantification of the attention 

a person is paying to stimuli. To the best of our knowledge, only psycho-physiological measures of patient’s 

attention to visual feedback have been reported in the literature (Bakker et al, 2007), while video-based 

assessment of attention has not been proposed in the field of rehabilitation.  

Methods for real-time detection of face, facial features, eye movements and gaze direction from video have 

attracted a lot of research in the past decade (Hansen and Ji, 2010). Numerous algorithms for facial feature 

extraction have been proposed, mostly in the context of face detection and recognition (Bagherian and Rahmat, 

2008). Currently, the most promising approaches rely on fusing multiple visual cues, such as combining local 

feature matching with intensity-based methods (Liao et al, 2010). Existing methods for quantification of user’s 

attention to visual feedback have mostly been developed for Human-Computer Interaction applications and in 

order to help severely disabled people (Poole and Ball, 2005).  
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2.  METHODS 

An overview of our approach is depicted in Fig. 1. The patient is fixed in a robotic gait trainer, which moves 

patient’s legs according to predefined rehabilitation scenarios, adapted to patient’s current walking abilities. In 

front of the patient is a large TV screen showing various visual feedbacks. A high speed video camera is 

mounted above the TV. The camera captures HD video of patient’s face, while simultaneously EEG is recorded 

from 51 scalp sites and EMG is recorded from both legs (tibialis anterior).  

The video streams are processed by our algorithms. First, frontal faces are detected and main facial features 

are extracted (corners of the eyes, pupil centers, mouth, tip of the nose). To suppress jitter from detection errors 

and body swings during walking, a Kalman filter is applied to the locations of extracted facial features. Next, an 

active appearance model (AAM – Matthews et al, 2007) of the face with 59 facial landmarks is used to more 

accurately represent the current facial pose/expression. The distances between extracted landmarks are used to 

calculate the head pose and gaze direction. Finally, different metrics of patient’s attention /compliance are 

computed: percentage of time the patient is observing the visual feedback, spatial gaze distribution maps, 

responses to actions in the VR environment, etc. 

 

Figure 1. Overview of the proposed approach for video-based estimation of patient’s 

attention/compliance during robot-enhanced rehabilitation. 

We tested 5 different visual feedbacks (Fig. 2): calibration screen for initialization of our algorithms, 2D plots of 

current leg positions, 2D plots of muscle activations, and two realistic VR environments (walk in a park from 1
st
 

and 3
rd

 person perspective). The VR environments were created in OpenGL 3.3 and consist of ground, sky dome 

and male/female avatars. The avatars were created in Mixamo Pro Character Creator Tool and animated with 

AutoDesk 3DS Max 2012. Both avatars have an underlying bone structure with all major joints modeled, 

allowing animation of almost all human movements. The actual avatar movement within the VR environment is 

controlled by kinematic data from the robotic trainer, so leg movements in VR world correspond with leg 

movements in real life.  

The whole video processing system was designed for real-time operation, but current version of the software 

is a mix of C++ and Matlab routines and runs at ~1 frame per second. Therefore, all video processing is currently 

performed offline, but (near) real-time operation is possible with further optimization of the code.  

 

Figure 2. Five different visual feedbacks that are shown to the patient during therapy. 
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3.  EXPERIMENTAL RESULTS 

The proposed system was evaluated in an experiment that involved 4 stroke patients and consisted of 5 runs of 

robot assisted walking with different visual feedbacks. In all runs, the patients were instructed to walk actively, 

maintaining a constant speed, and applying minimum force on the robot. A 42" screen was placed in front of the 

patient, 1.4 m away from his face. Each run lasted 4 minutes. For all visual feedbacks the walking speed 

remained constant. During the experiments videos of the patient’s face were recorded to disk and later processed 

offline. 

On average, the face was detected in 93 % of video frames recorded (i.e. in practically all the frames with 

frontal faces whereas the profile faces were not detected). Eyes, mouth, nose, and pupils were accurately 

detected in more than 99% of detected faces (Table 1). Detection of facial features was skipped in video frames 

with no face detected. The average jitter of detected facial features was 1.0 ± 0.4 pixels. The AAM was 

successfully fitted to all frontal faces. The average jitter of AAM landmarks was estimated at 0.6 ± 0.4 pixels.  

Table 1. Facial feature detection performance, estimated on three test videos. 

 Video 1 

(gaze targets) 

Video 2 

(gaze targets) 

Video 3 

(VR 3
rd

 person) 

 frames % frames % frames % 

Whole video 9999 100 % 13391 100 % 10551 100 % 

Face detection 9833 93.7 % 13193 98.5 % 10427 98.8 % 

Detection of left eye 9805 99.7 %
*
 13174 99.9 %

*
 10419 99.9 %

*
 

Detection of right eye 9769 99.3 %
*
 13179 99.9 %

*
 10408 99.8 %

*
 

Detection of left pupil 9800 99.9 %
#
 13191 99.9 %

#
 10419 100 %

#
 

Detection of right pupil 9769 100 %
#
 13187 100 %

#
 10408 100 %

#
 

Detection of nose 9827 99.9 %
*
 13150 99.8 %

*
 10423 99.9 %

*
 

Detection of mouth 9742 99.1 %
*
 13174 100 %

*
 10414 99.8 %

*
 

*
 Values normalized by the number of face detections. 

#
 Values normalized by the number of eye detections. 

 

Videos recorded during sessions with the screen displaying calibration targets were inspected by an expert and 9 

approximate gaze direction (top-left, top-centre, top-right, bottom-left, bottom-centre, bottom right, left-centre, 

right-centre and centre of the screen) were manually annotated. The time periods corresponding to eye 

movements or eye blinks were ignored and were not annotated. Gaze direction was then calculated automatically 

by our algorithm and compared to manually annotated gaze locations. The gaze directions were identified with 

average accuracy of 94% ± 6%. Most errors originated from distinguishing between top-left vs. bottom-left and 

top-right vs. bottom-right gaze directions.  

Fig. 3 shows an example of patient’s detected level of attention to visual feedback, estimated as percentage of 

time in 1 second intervals with gaze fixed to the TV screen; all gazes outside the screen were classified as non-

attention. Fig. 4 presents an example of the estimated spatiotemporal gaze distribution metric. This metric shows 

relative frequency of identified gaze locations over 4 minutes long gait rehabilitation. Brighter spots in the gaze 

distribution plots indicate areas with more frequent attention. Such maps support identification of gaze targets 

(i.e. gaze hot-spots) and assessment of spatiotemporal correlation between patient’s attention to visual feedback 

and other BNCI-based performance indices of gait rehabilitation.  

 

Figure 3. An example of estimated level of patient’s attention to visual feedback.  
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Figure 4. Example of spatial gaze distribution plots (bottom row) for three different visual 

feedbacks (top row) shown to a patient during 4 minutes long gait rehabilitation. 

4. CONCLUSIONS 

We developed and validated a video-based system for robust tracking of patient’s face pose and gaze direction 

during robot-assisted lower limb rehabilitation therapy. The results (Fig. 3 and Fig. 4) show that such system can 

be used to unobtrusively analyze patient’s attention to displayed visual feedback and to provide means for long-

term quantification of visual feedback effects on the rehabilitation progress. It can also serve as an additional 

feature for other BNCI performance indices, such as similarity of motor modules, kinetic and kinematic profiles 

and brain patterns. For example, preliminary results show significant correlation between attention to muscle 

activation plots and improvements in muscle activations during walking. 
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